Absence of population-level phenotype matching in an obligate pollination mutualism.
نویسندگان
چکیده
Coevolution is thought to promote evolutionary change between demes that ultimately results in speciation. If this is the case, then we should expect to see similar patterns of trait matching and phenotypic divergence between populations and between species in model systems for coevolution. As measures of divergence are frequently only available at one scale (population level or taxon level), this contention is rarely tested directly. Here, we use the case of co-divergence between different varieties of Joshua tree Yucca brevifolia (Agavaceae) and their obligate pollinators, two yucca moths (Tegeticula spp. Prodoxidae), to test for trait matching between taxa and among populations. Using model selection, we show that there is trait matching between mutualists at the taxon level, but once we account for differences between taxa, there is no indication of trait matching in local populations. This result differs from similar studies in other coevolving systems. We hypothesize that this discrepancy arises because coevolution in obligate mutualisms favours divergence less strongly than coevolution in other systems, such as host–parasite interactions.
منابع مشابه
Repeated independent evolution of obligate pollination mutualism in the Phyllantheae-Epicephala association.
The well-known fig-fig wasp and yucca-yucca moth mutualisms are classic examples of obligate mutualisms that have been shaped by millions of years of coevolution. Pollination systems involving obligate seed parasites are only expected to evolve under rare circumstances where their positive effects are not swamped by abundant co-pollinators and heavy costs resulting from seed destruction. Here, ...
متن کاملAn obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae).
Highly coevolved pollination mutualism accompanied by reciprocal diversification has been known in only two plant genera, Ficus (Moraceae) and Yucca (Agavaceae), which are pollinated exclusively by obligate seed-parasitic wasps and moths, respectively. An additional, highly diversified, species-specific pollination mutualism between a monoecious tree genus, Glochidion (Euphorbiaceae), and a mot...
متن کاملCoevolution and divergence in the Joshua tree/yucca moth mutualism.
Theory suggests that coevolution drives diversification in obligate pollination mutualism, but it has been difficult to disentangle the effects of coevolution from other factors. We test the hypothesis that differential selection by two sister species of pollinating yucca moths (Tegeticula spp.) drove divergence between two varieties of the Joshua tree (Yucca brevifolia) by comparing measures o...
متن کاملPollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms.
Nursery pollinators, and the plants they use as hosts for offspring development, function as exemplary models of coevolutionary mutualism. The two pre-eminent examples--fig wasps and yucca moths--show little variation in the interaction: the primary pollinator is an obligate mutualist. By contrast, nursery pollination of certain Caryophyllaceae, including Silene spp., by two nocturnal moth gene...
متن کاملPattern and timing of diversification in Yucca (Agavaceae): specialized pollination does not escalate rates of diversification.
The yucca-yucca moth interaction is one of the most well-known and remarkable obligate pollination mutualisms, and is an important study system for understanding coevolution. Previous research suggests that specialist pollinators can promote rapid diversification in plants, and theoretical work has predicted that obligate pollination mutualism promotes cospeciation between plants and their poll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of evolutionary biology
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2010